80 research outputs found

    Rectifying fluctuations in an optical lattice

    Get PDF
    We have realized a Brownian motor by using cold atoms in a dissipative optical lattice as a model system. In our experiment the optical potential is spatially symmetric and the time-symmetry of the system is broken by applying appropriate zero-mean ac forces. We identify a regime of rectification of forces and a regime of rectification of fluctuations, the latter corresponding to the realization of a Brownian motor

    Ratchet potential for fluxons in Josephson-Junction arrays

    Full text link
    We propose a simple configuration of a one-dimensional parallel array of Josephson junctions in which the pinning potential for trapped fluxons lacks inversion symmetry (ratchet potential). This sytem can be modelised by a set of non-linear pendula with alternating lengths and harmonic couplings. We show, by molecular dynamics simulations, that fluxons behave as single particles in which the predictions for overdamped thermal ratchet can be easily verified.Comment: 7 pages, 8 figure

    Quantization and Corrections of Adiabatic Particle Transport in a Periodic Ratchet Potential

    Full text link
    We study the transport of an overdamped particle adiabatically driven by an asymmetric potential which is periodic in both space and time. We develop an adiabatic perturbation theory after transforming the Fokker-Planck equation into a time-dependent hermitian problem, and reveal an analogy with quantum adiabatic particle transport. An analytical expression is obtained for the ensemble average of the particle velocity in terms of the Berry phase of the Bloch states. Its time average is shown to be quantized as a Chern number in the deterministic or tight-binding limit, with exponentially small corrections. In the opposite limit, where the thermal energy dominates the ratchet potential, a formula for the average velocity is also obtained, showing a second order dependence on the potential.Comment: 8 page

    Voltage rectification by a SQUID ratchet

    Full text link
    We argue that the phase across an asymmetric dc SQUID threaded by a magnetic flux can experience an effective ratchet (periodic and asymmetric) potential. Under an external ac current, a rocking ratchet mechanism operates whereby one sign of the time derivative of the phase is favored. We show that there exists a range of parameters in which a fixed sign (and, in a narrower range, even a fixed value) of the average voltage across the ring occurs, regardless of the sign of the external current dc component.Comment: 4 pages, 4 EPS figures, uses psfig.sty. Revised version, to appear in Physical Review Letters (26 August 1996

    Mechanical coupling in flashing ratchets

    Full text link
    We consider the transport of rigid objects with internal structure in a flashing ratchet potential by investigating the overdamped behavior of a rod-like chain of evenly spaced point particles. In 1D, analytical arguments show that the velocity can reverse direction multiple times in response to changing the size of the chain or the temperature of the heat bath. The physical reason is that the effective potential experienced by the mechanically coupled objects can have a different symmetry than that of individual objects. All analytical predictions are confirmed by Brownian dynamics simulations. These results may provide a route to simple, coarse-grained models of molecular motor transport that incorporate an object's size and rotational degrees of freedom into the mechanism of transport.Comment: 9 pages, 10 figure

    Extended Standard Map with Spatio-Temporal Asymmetry

    Full text link
    We analyze the transport properties of a set of symmetry-breaking extensions %, both spatial and temporal, of the Chirikov--Taylor Map. The spatial and temporal asymmetries result in the loss of periodicity in momentum direction in the phase space dynamics, enabling the asymmetric diffusion which is the origin of the unidirectional motion. The simplicity of the model makes the calculation of the global dynamical properties of the system feasible both in phase space and in controlling-parameter space. We present the results of numerical experiments which show the intricate dependence of the asymmetric diffusion to the controlling parameters.Comment: 6 pages latex 2e with 12 epsf fig

    Giant coherence in driven systems

    Get PDF
    We study the noise-induced currents and reliability or coherence of transport in two different classes of rocking ratchets. For this, we consider the motion of Brownian particles in the over damped limit in both adiabatic and non-adiabatic regimes subjected to unbiased temporally symmetric and asymmetric periodic driving force. In the case of a time symmetric driving, we find that even in the presence of a spatially symmetric simple sinusoidal potential, highly coherent transport occurs. These ratchet systems exhibit giant coherence of transport in the regime of parameter space where unidirectional currents in the deterministic case are observed. Outside this parameter range, i.e., when current vanishes in the deterministic regime, coherence in transport is very low. The transport coherence decreases as a function of temperature and is a non-monotonic function of the amplitude of driving. The transport becomes unreliable as we go from the adiabatic to the non-adiabatic domain of operation.Comment: 15 pages, 9 figures, replaced by the version to appear in JSTA

    Transition from anomalous to normal hysteresis in a system of coupled Brownian motors: a mean field approach

    Full text link
    We address a recently introduced model describing a system of periodically coupled nonlinear phase oscillators submitted to multiplicative white noises, wherein a ratchet-like transport mechanism arises through a symmetry-breaking noise-induced nonequilibrium phase transition. Numerical simulations of this system reveal amazing novel features such as negative zero-bias conductance and anomalous hysteresis, explained resorting to a strong-coupling analysis in the thermodynamic limit. Using an explicit mean-field approximation we explore the whole ordered phase finding a transition from anomalous to normal hysteresis inside this phase, estimating its locus and identifying (within this scheme) a mechanism whereby it takes place.Comment: RevTex, 21 pgs, 15 figures. Submited to Physical Review E (2000

    Current reversal with type-I intermittency in deterministic inertia ratchets

    Full text link
    The intermittency is investigated when the current reversal occurs in a deterministic inertia ratchet system. To determine which type the intermittency belongs to, we obtain the return map of velocities of particle using stroboscopic recording, and numerically calculate the distribution of average laminar length {}. The distribution follows the scaling law of ϵ1/2{} \propto {\epsilon}^{-1/2}, the characteristic relation of type-I intermittency.Comment: 4 pages, 7 figure

    Multiple current reversals in forced inhomogeneous ratchets

    Get PDF
    Transport properties of overdamped Brownian paricles in a rocked thermal ratchet with space dependent friction coefficient is studied. By tuning the parameters, the direction of current exhibit multiple reversals, both as a function of the thermal noise strength as well as the amplitude of rocking force. Current reversals also occur under deterministic conditions and exhibits intriguing structure. All these features arise due to mutual interplay between potential asymmetry,noise, driving frequency and inhomogeneous friction.Comment: 6 figure
    corecore